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A COMPLETE IMPORTANCE RANKING FOR COMPONENTS
OF BINARY COHERENT SYSTEMS,

WITH EXTENSIONS TO MULTI-STATE SYSTEMS
D. A. Butler

1. Introduction
Given a system composed of many components, a question of con-
siderable interest is which components are most relevant or crucial
to the proper functioning of the system. In response to this question,
a number of importance measures and rankings have been proposed (3),
(L), (5, (9). This paper investigates a new ranking and compares it
to existing rankings, principally the ranking induv-~c - the Birnbaum
reliability importance measure. The new ranking . >d upon minimal
cuts and provides a complete ordering of all the system's components
relative to their importance to the system reliability. This ranking
has three main points in its favor, (i) the calculations involved
require only readily obtainable information; (ii) the calculations
are usually quite simple; and (iii) the ranking is designed for use with
systems consisting of highly reliable components, the most common case.
The final section of the paper deals with extensions of importance : ?
measures and rankings to systems in which both the system and its
components may be in any of a finite number of states. Many of the

results about importance measures and rankings for binary systems : |




established in preceding sections are shown to extehd to the more
sophisticated multi-state systems. Also, the multi-state importance
measures and rankings are shown to be decomposable into a number of

sub-importance measures and rankings.

Preliminary Definitions

Consider a system which consists of n components lebelled
*
T Geey N, With each component i, associate the binary random variable
X., where
i
‘ 1 if component i functions satisfactorily,

Xi =
l 0 otherwise.

The time domain over which the components and the system are to function
is implicit and not specified. This time may be fixed or variable and
may not even be the same for each component.

Let X = (X , X_). It will be assumed that the system

s v n

functions or fails depending solely upon the random outcome X. There-

fore one can define a function ¢ as follows:

‘ 1 if the system functions given X = x
d(x)

= for all x C S,
' 0 otherwise

where § = {x € R X, = 0,1} 1is the range of X.

'The notation and basic definitions of Sectious 2, 3 and 4 follow that
of (2) throughout.




This function ¢ is called the structure function and relates the

system state (namely O or 1) to the component states.

For each x ¢ RY, 1let (li’i) denote the vector

(xl, Xy eees X5 1 1s X, oL Xr)' Similarly, let (01,5) denote

the vector (xl, Xop weesr Xy g0 O Xy 0s oon, x ).
Definition 1. A component i is relevant if and only if there exists
5
an x € S such that d(oi,x) # ¢(1L,,x). Otherwise, component i is
X 2 g2k

irrelevant.

A component is irrelevant simply if it never affects the state of the
system. Of course, most systems do not contain irrelevant components.
Also, most systems have the properties that (i) the system fails if
all its components fail and functions if all its components functic ,

and (ii) it is not possible to degrade the system state by upgrading

one or more component states. These fundamental properties are embodied

in the following definition.

Definition 2. A structure function ¢ is coherent if and only if
ii) ¢(x) 1is non-decreasing in x,

iii) each component is relevant.

The ordered pair (N,d) where N 1is the set of component indices

is called a coherent system.

¥

To avoid the use of multiple parentheses, the notation ¢(Oi.£) will

be used in place of d((Oi,i)). When no confusion can result similar
simplifications will be employed without mention in the following.




Example 1:
a) N ={252,3)

glx) = x, (1 = (1-x,)(1-x,))

Source Sink

Example 1 above exhibits two simple coherent systems. The structure
functions for both systems are specified by giving formulas for them.
However, the accompanying graphs provide more easily understood repre-
sentations of the system structures. Any coherent system is representable
by such a graph. These graphs consist of directed and undirected edges

and always contain a unique source and a unique sink. A gpecific

o+

component is associated with each edge. The system functions if and

only if it is possible to proceed from source to sink along a path

177]

(following the orientation of any directed edges in the path) all of




whose edges correspond to functioning components. In Example 1(a) it

is seen that if components 1 and 2 function end component 5 fails, then
’ the system functions because it is possible to go from the source to
the sink along the "functioning" path (1,2). However, should component 1
fail, then regardless of the cstates of components 2 and %, the system
fails because no such path then exists. The coherent system of
Example 1(b) is called a 2-out-3 system. This system consists of three
components and functions if and only if at least two of the components
function. Note that in the graphical representation of this system each
component is acssigned to more than one edge. It is not possible to
represent this system by a graph for which there is a one-to-one corres-
pondence between edges and components.

In the following, it will be assumed that the random variables
Xi are mutually independent. (0Of course for many systems such is not
the case. Factors which cause dependence include the "loading" which
may occur on remaining components should one or more parts fail, and
"common-mode" failures, that is, simultaneous failures of two or more

components stemming from a single cause.) Let p,

=Pp{X.=1l]: p. 18
i \1113p1 2

called the reliability of component i. Similarly, the system
reliability is defined as Pr{d(&) = 1}. Assuming independence, one
can compute the system reliability knowing only the value of

.X.
P = (Pys Pps sees p,)» @and thus define the reliability function,

y

h(p) = Pr{¢(X) >|l}.

In the following whenever the scalar p appears in an expression
normelly involving the vector p, p will be understood to be a vector
all of whose components are equal to p, i.e., p - (PsPywesyD)e




Example 1 (continued):
(a) h(p) = pl(l -

f

‘\1-_“,-,\ (]_..p;)\/ J

(0) h(p) = pyp, + PyP5 * PP = 2P1P,Ps

s e v A it 8-

) Definitions of Component Importance--Binary Systems |

Consider an arbitrary coherent system (N,d) of independent

!
components with associated reliability function h(p). Birnbaum (L) {
§
i
defines importance as follows. /]
i

Definition  (Birnbaum): The reliebility importance of component i,

T (igp), is Fh(g)/%p.. (Often the dependence upon p is suppressed
his g 1

and the notation simplified to Ih(i).)

-

An equivalent definiticn of Ih(i‘ is given by Proposition 1 below,

due to Birnbaum (L),

Proposition 1: I}(i;DT‘ - h(li,p\ - h(oi,g\,
Proof: Ry conditioning on whether or not X. = 1, one can easily show
L
that
h(p) = p.h(1,,p) + (1-p,) h(0,,p) for all p (1




Proposition 1 simply states that the Birnbaum reliability
importance of component i is the probability that the system functions
given component i functions minus the probability that the system
functions given component i fails. Clearly, O < Ih(i;E) <1, and
Ih(i;g) does not depend upon p;. Because of this last property,
Ih(i) can be used to directly calculate the change in the system

reliability resuiting from a change in p;-

Proposition 2: Choose % € IR so that O < Py e S Defiine

éci l?n by

o

(]
W
=

<5

o)
o
i
=

The Hg) = h(p) + 8L (ip).

Proof. By Proposition 1 and equation (1),

1

h(p) + 81, (i3p) = p,;h(1,,p) + (1-p,) h(0,,p) + Bh(1,,p) - Bh(0,,p)

= f hél 0] + (1-51) h:’fOi,p_)

= h(p). O

To calculate the Birnbaum reliability importance of a component,

2 knowledge of the reliability function &u(:) and the component
reliabilities pl,po,...,pn are required. Birnbaum has also proposed

the following definition of structural importance, which can be used

when the component relisbilities are unknown.

7




Definition 4: The vector x € 8§ is a critical vector for component i
if and only if d(li.ﬁ) - OKoq.i) =
Definition 5; Let qd(i) = 1{5 € 3:x 1is a critical vector for component i}|,

where

denotes set cardinality. The Birnbaum structural importance

of component i, Id(iﬁ, is defined by Iq(i) i R qd(i), or ecuivalently,

by

This definition of component importance requires only a knowledge of the

structure function for its calculation. Birnbaum's reliability and

structural importance measures are related in the following proposition.
Proposition 3 (Birnbaum): ;j(j} = Ik(j: L /2
4

Proof: By summing over the 2" possible values for the random vector X,
Xy l—xi
( \ = ' . wl) ) f \,
h(p) Z p; (1-p,) d(x
P SHS
Thus
g b . Xy e =
L (35p) =3n(p)Pp, =5 &[0 p, ~(1-p,) “1d1,x) - g0,,x)].
e i B ey Sy e 1 J= e
X<S 1#]
: /Y b ~=y
L (3:1/2) = L 270g(1,x) - ¢(0,,x)]
i XCS -




Thus, the Birnbaum structural importance is just the Birnbaum reliability

importance where each component is assumed to be as likely to fail as
to function. A more complete discussion of the Birnbaum reliability
and structural importance measures is contained in (4.

Barlow and Proschan (%) have also developed structural and
reliability importance measures. Their reliability importance measure

requires a knowledge of the distribution F, of the time-to-failure
:

for each component i.

Definition 6 (Barlow-Proschan): The B-P reliability importance of g

component i, Ph{i) is given by

0% 3
p. (i) =/ [n(1,,F(t)) - n(o,,F(+))] aF, (¢t
h 0 3= e i
or equivalently,
o0
P (1) = [ I, (1;E(%)) ar (%) .
e ST

Note: E(t\ denotes the vector (L-Fl(t‘, l—FQ(t\..... 1-Fn(t)‘ in the above. '
This measure can be interpreted as the probability that the failure of
component i causes the system to fail (3). When the Fi are unknown,

Barlow and Proschan suggest the use of the zbove measure with the
substitution of & common time-to-failure distribution F for each Fi'
By making the change of variable p - T(%t) the following definition

results.

13
.
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Definition 7 (Barlow-Proschan): The B-P structural importance of |

component i, Po(i}, is given by

(1) = [ [(n(1,,p) - n(Oi,p)fip

or equivalently
1
D o(1) - S 3 e v
S\ J R A
‘ 5 B
(Note scalar p in above.) 3

The two importance measures Id(i) and Pdfi) are termed !

structural measures because they only require a knowledge of the rystem !

structure function to be calculated. This gives them an important
practical advantage over the more sophisticated religbility importance
measures, because often the more detailed knowledge reguired for the
calculation of these latter measures is unobtainable. Both structural
measures can be derived from the Birnbaum reliability importance measure,

i:p). The Birnbaum structural importance measure assumes a common

reliability of one-half for each component, while the B-P structural

measure averages isjp) over all p € [0,1]. Thus both measures

ok

h
favor neither high nor low component reliabilities. This may represent
; 5

a significant weakness of these measures because often component
reliabilities,while unknown, are thought to be high {perhaps even .99 or
higher). It would seem desirable, therefore, to develop a measure or

ranking that is structural (i.e., is based solely upon the system

10




T

structure function and therefore not upon p), yet is somehow related

to the Birnbaum reliability importance measure for high velues of p.
The new ranking proposed in this paper is such a result. This new

ranking is based upon cuts.

Definition 8: A set Cc N is a cut if and only if ¢(x) = O for

every x € S such that X, = O for each i € C. A cut set C is

minimal if and only if no proper subset of C 1is a cut.

The notions of cuts and minimel cuts appear widely in reliability
theory. A knowledge of all the minimal cuts of a coherent system
(N,¢) 1is equivalent to a knowledge of ¢ since ¢(x) =1 if and only
if {i:xi = 0} contains no minimal cuts. A methodology for computing
all winimal cuts for an arbitrary coherent system expressed as a faull
tree appears in (6).

For each component £ of a coherent system (N,¢) with ¢t

)
minimal cuts, let d(g’ denote the number of unions of i distinct

13
min cuts that contain exactly J components and include component £,
EAY i-1 (%)
O - n). Let b = )Em (-1) 2 d;: . Let
2) (g ( AR
3( = ('Y, b.\,’). ) b2y

Definition 9: Component £ is more cut-important than component k,

: . (2) (k)
denoted £ >, k, if and only if b >D

, where } denotes

lexicographic ordering. Components £ and k are egually cut-important,

7) )
denoted £ - k, if and only if Bl o piE),




This ranking,which provides a complete ordering of all components,

is an extension of a partial ranking developed in an earlier paper (°).

or £ = 2, the non-zero d.. 's are as follows: 7; — B g
' 1J 1z 9
() (:\ <,) (’: ( \ (n)
INE 2 U <) — \&/ _ ) \&/) _
dyy =4, dz),” =3, Q' = 1L, dgg” =5, 4y’ = b, 4y’ =11,
5 Gl 5 €
i "
. (2) : i A
] 6, Thus b’ = (0,3,-4,-1,3,-1). Similarly, ]
(1) . . (3) -
'’ = (0,2,43,-1,3,-1), b’ =(0,1,-1,-2,3,-1),
-4 / \ S (5) 5 . /
b = (0,0,2,=5,4,=1), b = (0,1,1,=5,4,=1}, (2)
.’;‘ "
E. % \',,l.-.L,-,j,ﬁ,-l\,
Therefore 2 > 1 > > 3 = 6> 4

c (= c (o c

i




h(p) = PP + PoPy * PyPaPg = PyP,P)Dc = PPoP3P) Py

i plp\pjpp( w ')lp»f"‘i.“

2 L 5 z 2 L
Ih(l;p) = Dpid = pj -2p +p, Ih(e;p) =p+p «p’ =2p
£ S Bedeh 5 : z ' L 5
L (3p) =p~ -2p" +p°, I (hp) = p° - P -p'+p
9 i 5 : z L “
TA0ip =B aa = p H D I,(65p) =p" ~2p +p
Id(1> 1 /32, Id(h) = 17/32 Id(j> = 5/32,
Td(h\ = 3/32, Ij\“) = 11/32, Id((‘ = 5/32
P¢(1) = i85 Ddz’e‘) = 550, Pd(z) = .100,
P (I =050, PUS) = 1207, 1.6y = 100,
¢ 7]

Denote the ordering of the components induced by P¢(i) by >D. Then

. o 5 )
Q>P)/JP]_>P5~P6>D4.

£

Denote the ordering of the components induced by Id(i} by >d' Then

Finally. denote the ordering of the components induced by IH(';p\

by = . (This ordering depends upon the value of p.) For any value




For p>(~1+5)/2~ .618, 1> 5. For p< (-1 +5)/2, ¢ >y L

Thus when p < .6l% the ordering induced by Ih(-;p) gives the same
component ordering for this example as do the other two measures,
Io(-) and P (+). For p > .619, however, the ordering \h reverses

1 and 5 relative to these other orderings. For these higher values of

> and > are identical. TIn the next section this

p, the orderings s .

last statement will be proved as a general result about coherent systems

of independent compcnents.

i. Analysis of the Cut-Importance Ranking--Binary Systems

As stated in the introduction, the cut importance ranking has
three main favorable properties; i) it is based upon readily obtainable
information, 1ii) is usually easily calculated, and iii) is in some
sense biased for high comporent reliebilities. The first property is
already established, since this ordering is based only upon the system
structure function through the minimal cuts of the system. This section
will discuss the second and third properties.

The precise meaning of the third property of the cut-importance
ranking is given in Theorems 1 and 2 below. The first theorem relates
the cut-importance ranking to the Birnbaum reliability importance measure

in the case where the component reliabilities are equal and high.




Theorem l: For p sufficiently close to one, the orderings >h and

>c are identical.

Proof: The above is a direct result of Lemma 1 which follows. Using
the lemme, it is clear that / = k if and only if Ih(;".;p) = Ih(k;p;

for all p. Also, £ > k if and only if b8 -8y o ang

( - \! )
:‘E) - Q(K')- 0 if and only if Ih(ﬂ;p) > Ih(k;p) for all p
sufficiently close to one.
n ,
= /) =1
Lemma 1: Ib(ﬂ;pF = bgi‘ (1-p)?
————— 1) : J
J::l
&
Proof': h(p) =Pr( N B.) ,
=1 T

™

. S o1 (T ;
where o denotes the event that at least one comporent in i min cut functions.

Thus

t
h(p) = 1 - Pr(‘Ul E;).
1=

By the inclusion-exclusion principle (7),

t 3
h(p) =1 - ¥ (-1)7 8;,
i=1
where
8, % pr(eC NES N nE® ).
1€), <, <=r= < 3 58 1 Y2 Ji

Now using the independence assumption,




1. €9 . <L o SR TREE, U E . Uil
o) J v * . "

o

where C,,...,C, are the minimal cuts of the system. Thus

oh(p) & -
L(sp) = 50— = T (07 z 1

13y <, <o <dy<tlEEC,

&

&

(S
'

=

EC, UC, Us-+UC, ke

£
Reealling p, =p, =--+ =p =p, and the definition of :;:
t n §o] A
L (sp) = 2 2 (-1) (L-p)¥ — 4., ,
: i=1 j=1 n)

=

We now consider the case where the component reliabilities are high

but unequal. Let p(e)

scalar ¢ for which 0< p,(e) <1 for all ¢ € (0,») and

Let 1lim g(») = 1. Unfortunately, it is not in generzl true
-0
component ordering induced by Ih(';g(n)? coincides with >

suffieiently close to zero.

m ple) some partial results along these lines are possible.

be a vector-valued function of the positive

i = n;

that the

for all

However with some additional assumptions

First

we eshablish a simple formula for the first non-zero coordinate in any

(Corollary 1 bhelow).




For each component k, let e

Proposition U:

the smallest minimal cut containing component

'S
£ o= }.{k).

S e
X

number of minimal cuts of cardinality

(
i) e, = min{j;b;k)

# 0}, and ii)

dfj) il
e -

minimal cuts at least one of which contains

(1
Thus d;i)
"k

Proof. By definition

at least ek+l. == O Eorie v

B2

Mt

il dgk)
-ek

{

Also, since component k

a{k)
iJ

=00 forigll ' Jise

than € Kk

o

Corollary 1: (i)

(11)

Theorem 2: Assume

l A

A i)

AN

either e, < e, or ii) e

7
such that

~
v

there exists an ¢ >

<

Proof: See Theorem 2 in (5).

Ly

containing k.

Also any union of two

k

is contained in no cuts of cardinality smaller

Thus bgk) =0 for J< e

and (fV/f

be the cardinality of

k, end let f, ©be the

<8

Then

or more

must have cardinality

s}
e

Therefore

= fk 3

K

small «.

ek-l
) (M. /M) -
X ‘Ml NE' hen

o(c)) for all ?




Further resulte along these lines are surely possible, but their value
is questionable because the hypctheses become too complex. From a practical
standpoint users of the cut-importance ranking should be aware that

while the ranking can be useful even when component reliabilities are

unequal, it may be misleading if the differences in the orders of

We now turn to the guestion of the computational complexities
involved in determining the cut-importance ranking of a system's

components. It is clear that the task of computing the entire vector

(k) AL
b* for each component k can be a formidable one for a complex system

with many minimal cuts. However, Proposition % and Corollary 1 show

thet often components can be compared by only determining the easily

computed quantities o and fk' For instance, in Example 2 on pages

12-1k4, it is possible to determine that

this manner. Also, since the structure function is symmetric in

nd x,, it is clear that 3 = 6. Thus additional calculations
c

are necessary only to compare components 5 and 5. As can be seen from
uations (2) of Example 2, the ordering of these two components can
(3) (s
determined by computing the next entries in b'”’ and b 77,
£z ((“‘ (-\v
nam:zly b;”' end bﬁ". The last three entries in each vector b"
~

1
~

oe

are irrelevant for the purposes of ranking the components in this

example.




In general, most components can be compared by determining

()

the first non-zero entry in b

()

in b

via Corollary 1. Other entriec
are computed only as necessary.
Computations can also be simplified when the =ystem under con-

sideration contains subsystems., or "modules'".

Definition 10: The coherent system (A,X) 1is a module of the coherent

system (N,@) if and only if
glx) = v(X(x),x ) for 8ll % €S ,

where U is a coherent structure function and A < N. 1In the avove,

A ; I : e
x  denotes a vector with components X, 1€ A, and A~ = N-A,

Intuitively, a module is a subset of components organized into some sub-
structure and which affects the system performance only through the
performance of the substructure. The following proposition, due to
Birnbaum (4), gives a formula relating the Birnbaum relisbility importance

measures of a system and its modules.

Proposition 5: Let (A,X) be a module of (N,¥) and let IE(-).
Ig('). and Iﬁ(') denote the Birnbaum reliability importance measures

for the structure functions X, ¢, and V¥, respectively. Then

Ig(k) = Iz(l)-lz(k‘ for 81l k € A,

19




Proof: Let h\'o‘. hd(-\. and h (-) denote the reliability functions
rrool "
of the structures X, ¢, and V¥, respectively. Then

. : L Ve
Corollar et b , b and b denote the vectors b

corresponding to %, ¢, and ¥, respectively. Then
I 3/

J 1 3
Vi A el g for all k€ A ,
a3 (1 1 J=i+1l

o b L 3
where the definition of Db is extended to include zero coordinates

K1 it L i :
for' 1 = !A!, and Q} is extended similarly. (The above eguation is

Jjust an expression of the fact that EVR is the convolution of the
finite sequences qu and Q”k.\
Proof: By Lemma 1 and Proposition 5,
c i
n ; [A™|+1 - [A| S :
o k J=1 YL Tl ! X o
P - (3 2?3 v (1-p) 9™
j,l b j:~]_ J .j=1 o
A S -
= %t bgl-b¥k.+ ) (1=p)97",
Jel 1e% . % J=i+1

Since this equelity holds for all O < p < 1, each pair of coefficients

of the two polynomials must be identical.




Ad

Corollary 2 can be applied to make the calculation of the cut-

importance component ranking simpler when the system contains modules.

Example 2 (continued): Components 7 and 6 form a module.

c

A ) =1~ (1= xlx”xh)(l - xlz)(l -x

A A |
A= {5,()1, X(z{_ ) = x3x6’ ‘*’(Zi,)_( 2x5)'

4 g tr
i w1y - (2,-1), g"l = 0,1,0,=2,1).

By using the concept of the dual of a coherent system (2), it
is possible to develop a component ranking analogous %o >c’ but based
upon minimal paths (2) instead of minimal cuts. This ordering can

be shown to be identical to the ordering induced by Ih(-;p) when

p 1is sufficiently small,

5. Component Importance in Multi-State Systems

This section deals with extensions of the results of the pre-
ceding sections to systems in vhich both the system and its components
may be in any of a finite number of states. Of course, any such increase
in the sophistication of the model used to represent a real system
entails both adventages and disadvantages. An obvious advantage is
the increased precicion with which the real system can be modeled.
The disadvantages include the necessities for collecting more sophisticated
data and making more complex decisions about how the model should be
fitted o the system.

21
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This extension to multi-state models is not intended to sugges

that binary models are inadeqguate. Tc the contrary, in most cases they
suffice quite well., However, in some instances & small increase in the
number of states (say, to three or perhaps four) can result in & much
improved model.

One of the main difficulties with multi-state models is the i
increased notational complexity. For this reason and for the reason
that the number of states in a practical model must be kept small if
the model is to be manageable, tThe following definitions will be given
for ternary (three-state) systems. Whenever the extension of a definition
or result to general n-state systems is unclear, an explanation will
be given.

The study of multi-state systems is a relatively new area in
reliability theory. Most articles in this area have dealt with general-

7

izing particular classes of results (1), (8), (10), (11). The most

\

general paper in the area is Barlow's (1). Let X, denote the state
=] LN 3

of component j, (X. =0,1,2, 1 < j <n). Given a collection of minimal
cuts Cys G e Ct which define the system structure, Barlow defines
the system state @(X) as the state of the "best" component in the

"worst' min cut, i.e.,

g{X) = min { max (¥,)
il Nk ol Sl )
S j

Let Z, e o o -
J {X; >k} i
binary, and ¢ 1is a function only of Z. Because of this property,

most results about binary coherent systems have immediate generalizations

2




under Barlow's extended definition. However, Barlow's definition may

not be sufficiently general for some systems.

Example 7. Engine Sub-System of & Light, Twin-Engine Airplene

0 if engine i siezed (prop dead in air),
7 . - . . 1 . - -
if engine j is "feathered", i

Let X, = ) L

Q
=
\ \M
H

In the following diagram, the component states are shown in a lattice

if engine j is fully functicnal.

if plane cannot land under power,

if plane cannot maintain altitude
but can land under power,

if plane can maintain altitude.

arrangement according to the less-than-or-ecual-to relation.

,_.u




ternary system cannot he fit into the framework of Barlow's
definition. To accommodate such systems, a more general definition of
a multi-state coherent system is proposed below.

o T e 2
Tet. 8 = fx€ R sx, =0,] , and let

Definition 11: Component i is relevant if and only if ¢(2,,x)

1

for some x € 8, Otherwise component i is irrelevant. Component i is

fully relevant if and only if @(2.,x) # ¢(1.,x) for some x € 8
M i’= i’= e

and ¢(1,,y) # ¢(0,,y) for some y C 8.

Definition 12: A structure function ¢ is coherent if and only if
) = 0; d(?_) =R
is non-decreasing in x,

component is relevant.

The ordered pair (N,f) 1s called a (generalized or ternary) coherent

If a component is not fully relevant, then only two states are
required to describe its status. Such components are permissible in
a generalized coherent system to allow for a mixture of binary and
ternary components.

Define the matrix

Pis = Pr{component i is in state j},

J

2l




The reliability function, h(P), is defined by

dependence of h(-) upon m

is suppregsed in the notation.) For any matrix A a,.l, let (k,,A)
= ke b 5! /
denote the metrix whose i-jth entry is given by
a, . g,
13
-~
(k,,A).. =4 1 e
% Al
0 =gk,
Definition 13: The r,s reliability importance of component i, denoted

B
5
L]
o)
i
(2]
ae)
l

where ¥, § =0,L,2 and r > s. The importance wiil

sometimes be simply called the reliebility importance and be denoted

The r,s reliability importance of component i is the probability that
the system is in ctate m or betier given component i is in state r

134

minus the probability that the system is in state m or better given

component 1 is in state s. As for its binary counterpart. the generalizec

R 5 appears in
i1l be understocd

this section and the next, whenever the vector L
'S ™
t w

an expression normally involving the matrix P, P
to be the matrix all of whose rows are equal to p.

1
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reliability importance can be used to calculate the change in the system

reliability which results from & change in the reliability of component i,
N )

Proposition 6: Let Byr B1r Bn € R satisfy 5, + 5, + &, 0 and

pi;‘ ik ’

I.Aj:.i ==

-J
Do T L=
kj y

Then
h(P) = n(P) + c”If’O(k;P\ + le’o(x;p,

2 h g I h

Proof: TFor any stochastic matrix Q, by conditioning on Xk, we have

h(@} = X qun<JK)"{)

-
J

o

< (= ; (7 D) ( Y3 Th( P wW(O P)]
= e 1B h P = ?‘ n‘_’:,'. ), L h O, .P), 27 fj h‘-‘_ Z e ..l'\J £ |

; .\'k:: \Jky ) Yot \ K'L \ 'S J T k} / k'

J4=0U =

2

2

ee comment at bottom of page 7.
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Definition 13: A vector x < S is r,s critical for component i
if and only if ¢(r.,x) - ¢(s,,x) >0. (r, s =0,1,2, r > 8,)
e =
r o
Definition 14: Let né"' = |{x € S:x is r,s critical for component i}!.
Ly B fg N P 2
The r,s structural importance of component i, Yd (i), is given by
r,S(.‘ _ oz T, 8.,
Ig \l = nd \ ~ .
2,0 2 it 1,0
Proposition 7: i) L) ()} =T (i) 4 L) (1
2,0 2Ly 1,0,
SRR e () sl e e (R
o/ ¢ D g
s A r,s =
g & e\ » S ey (3. (373 Wi
Tt E i) =TI sl G L
/ (0, \ h /
Proof: The proofs of (i) and (ii) are trivial. To prove (iii), note
. £ 1n"]- , R srecl ‘ > ) /3
that by summing over the 5 possible values for Lo k # i,
; ) -n+l , \
W4, (3)3,5/5.3/3)) =3 L Hiex)
i %9 it
x_:_'T
i
=-Nn 7 o
= 5 ‘T g(. .'}j ’ ()
Thus
ff,l : (1 /= 2 7 /2)) b o TR . I P \ d/'] 2 i |
Ik (1.: ‘l/,.l/),,_//)) =3 s »'v“i /A \"i‘)_‘.
(S

I‘r’l(i)




= 1,0, k SEar 2,0
The proof for I’ (:) 1is the same and the proof for Id’ (

d -) follows

from parts (i) and (ii).

Parts (i) and (ii) of the above result show that both importance
measures decompose into the sum of r+l,r importance measures. The
generalized cut-importance ranking to be defined later has a similar
property. In practice, it is likely that the 2,0 measures and rankings
would be the most commonly used. However, the other measures and
rankings can be useful in providing more detailed information about
which states are most relevant in determining a given component's
ranking. (See Example 4 on pages 3L-35.)

Given a generalized coherent system (N,¢), and a partition

€- (., c C.) of N into three sets, define x() € S by

6] & €

0

{ Y i,

\}_(,k'\-?/,‘] = 1 il (Jl

c Al S e

[=
The function l«?\ shows how any partition ® Getermines the states

of all the components.

Definition 15: A partition CB = /CO, Cl‘ €.} of N is a cut if and
and only if ¢(x(@®) <m Acut ¢ is & minimal cut if and only if




Exemple 3 (continued):

(g, {1.2], E) Min cuts:

Min cuts: (@

(E denotes the empty set.)

While it is in principle possible to develop a complete cut-

importance ranking for generalized coherent systems, in nractice the

=)

calculation of the entire generalized Db vector

£

for each component
is too complex to be feasible. However, a partial ordering of the
components which involves very few calculations can be developed by
generalizing Proposition 4 and Corollary 1 appropriately. First, the
notions of the size of a partition and the union of partitions

must be defined.

The size of a partition e - (CO, Cl’ C.), denoted

by z(@), is o.]C +ale.l. (o, @ are arbitrary constants
v el % 1Co] Ll e - A |

satisfying o, > C, o))

The roles of the constants a,, 2, are discussed on page 3l.

i
i
|
i
|
i




1 e j
Definition 17: Let 9,95, ..., ¥ Dbe partitions of N where

The union of 7, ..., J° is the partition

Definition 18: Consider a ternary coherent system with minimal cuts

£ 3 IS . .
e = (CO, Cl» €3y 1= 1, 2, ..., t. For each component k, let
pEls T : 1 b bl i
& = min {a2if k€)Y -2,

1<i<t X

and let
1, i g A i r+l, 1
gt s i ge o, 2l sa s M, 1l
"k e = c Hr k =l "
) 3 2 2 ol o i i
(By convention, e, T =+« if kg C.,1gicg e Rapiall roe = 0,1.2
such that r > s, define
: e;’s = min { e
s<u<r
and
r,S )3 S R 5
AR & - ool
s<u<r
wtl,u Tr,8
e L
k k




Component £ is more r,s cut-important than component k, denoted

¥ o
) >-C' > k, if and only if either
: S r,S
B Sants < e ;
B/
or
% r, s SO TS LTS
ii) eg’ = ek’“ Fhalik - G e

The 2,0 cut-importance ranking will sometimes be simply called the

cut~-importance ranking and be denoted by °

: o

As in the binary case, each of the r,s importance rankings is con-

sistent with the ranking induced by the corresponding r,s importance

(87 (@4 94 CX.
. Sad / 0 1 : 1,
measure. To be more specific, let p(e) = (¢ 7, € -, 1 = ¢ -€ 7).

-t

o

As <« approaches zero, E(E) puts almost all its mass on the bes
state, state 2. Of the mass left over, the ratio of the mass put on
state O to that put on state 1 approaches zero. Thus the parameters

o and o, give the relative weights put on components in state zero

te
I~

versus components in state 1 in the cut importance ranking and also

determine the relative likelihoods of & component partially failing
(state 1) and fully failing (state zero).

Theorem 3: Tor ¢ sufficiently close to zero, the component ranking

-
w
—
.

induced by ,g(z)) is consistent with the r,s cut-importance

ranking (r > s).

A\
-t

i, i e




s o 3 RS, ‘ \ \ \
Proof': Ih (k;p(e)) = h((r*]"}k'gl“'l" = nﬂpk,g(. ) )

1 -Pr{U B |X =rtl) -« [1 -Prf{ UE X =r1}]
> £ K " b

where E. {X < x(@")). Thus by the inclusion-exclusion principle,

i S © AR [ r r+l. z\
2 meele) = L =BT ig - 8 , (3)
h e £ 7 £ 1
nere
r il y
8 =8, = |X. =r+1)

—"

: Y0 B 5
nin {x"(e )}, 1<w<n X, =r
et Pt PR PR I<f=<i -

J

I

A M
)
o]
L 4
[
A

&

i
g |
Lo
[
I\
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A o, dJ
where éf. (DO’ Dl’ Dp\ is the union of (Z L, (2 L (B :

¥
By the definitions of e and fk’ the lowest order term in this

k . o
- - A e e 2 . K
polynomial expression for S, - Sy is lk € . Thus
e <
s el k k
S, = 8, = Fk( + ole ™)
a4 e i el'
Next we show that S; - Si ole ) for all i > 2. Let f}
be the union of any i minimal cuts (3 A AN R U @ satisfying
k €« D. Then
r
gl
| e 0t
!‘)OI _>__ 1(}0 !
and (14}
' l]ll | jll
D o ML s e R = IS R (S
Do e

The above two inequalities cannot simultaneously hold as ecualities

Jd J
L . . . 4
because then ?DO{ = ]Co {, which implies that Dy = €, and
. o Ji Js
ID.| = |c,”|, which implies that D, = G« Thus é} = Ci ~ and so

of the definition of &

Q
T
)
=3
(¢]
@

WO
=t : -

x(&) = x(C "). Now as an immediate conceq
A g Js 3y o

5(3\ < (7Y, and so 5(8 ) € Z’e “). Furthermore, C ~ £ C °,

so the inequality must be strict in at least one coordinate. But this

Jl ]
contradicts the assumption that the cut CE is minimal, and so at
least cne of the inequalities in (%) must be strict.

. : : -
Now the lowest power in the polynomisl expression for Si -5

is QOIDOI 4+ al‘Dl’ - ¢ But

&
For notational simplicity the superscript r+l,r which should appear

on e, fk’ 50. and Ih will be dropped in the remainder of the proof.

5y




T v | o o - £ y | X deolin
01041 + o |D, | 3 (10 2} IDQ! + L\,I%)| + [91, o
3 34 it
B> o i s + I: O -0
(JO l’]bO | ey + iey [ o
A J
i 1
> o e + ' {F o= 2
it GREL Bl = B ey
Thus
e
Il
s¥ - 87 " = ofe k)
4 i
Thus, by eauation (2
e e
I, (ksp(e)) = fk'” E & ol k) (5)

Now assume that /£ >c k. If e, < e, then by equation (5)

J k’

e e

Ih(252(()) - Ih(kzg(c)) : fﬂ'r £ 4 of(e ﬁ)

Thus for ¢ sufficiently close to zero this expression is positive
and so the two orderings of £ and k are identical in this case.

then again by equation (5)

it = -
if e, €. and f[ > fk’




Thus in this case, also, the two orderings are consistent for €
sufficiently small. This establishes the theorem for all the r+l,r

orderings. To establish the result for any r,s ordering* note that

r-1 1
PsSp oroyy = 5 petLRe . r vy
I.L'l \k;P_(‘—)«' i & ~1«‘_ .Kvk“("/' .
u=s

(See Proposition 7, part (i).) Combining this result with eguation (59,

/

I;’S(k:gfe)) = £

The remainder of the proof is identical to the r+l,r case.

Example U:

*or ternary systems, the only r+l,r orderings are the ~<~1 ordering
and the 1-0 ordering. The only other r,s ordering is the 2-0 ordering.
The notation in the proof and the definition of r,s cut-importance has
heen kept more general co that the extensions to general n-state systems
can be more readily understood.
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Consider the case where

i

¢
e

Components 1, ‘e not comparable under the ¢

A A T AT WIS

Lo}
e e s



e s B e s el

™

Thus component 1 is more important then component 2 in an overall sense
(i.e. according to the 2,0 cut importance ranking). Moreover, the
;1 and 1,0 rankings of the components show that it is the state 1
to state O transition of the components which determines the 7,0
ranking here.

As was the case for binary systems, analogous results based
upon minimal paths can be developed for ternary systems composed of

very unreliable components. €
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